performance improvements by pre-defining queries
All checks were successful
Deployment / deploy-docker (push) Successful in 17s
All checks were successful
Deployment / deploy-docker (push) Successful in 17s
This commit is contained in:
22
daemon.py
22
daemon.py
@@ -6,6 +6,7 @@ import requests
|
||||
from src.exchanges.eix import EIXExchange
|
||||
from src.exchanges.ls import LSExchange
|
||||
from src.database.questdb_client import DatabaseClient
|
||||
from src.analytics.worker import AnalyticsWorker
|
||||
|
||||
logging.basicConfig(
|
||||
level=logging.INFO,
|
||||
@@ -27,8 +28,6 @@ def get_last_trade_timestamp(db_url, exchange_name):
|
||||
data = response.json()
|
||||
if data['dataset']:
|
||||
# QuestDB returns timestamp in micros since epoch by default in some views, or ISO
|
||||
# Let's assume the timestamp is in the dataset
|
||||
# ILP timestamps are stored as designated timestamps.
|
||||
ts_value = data['dataset'][0][0] # Adjust index based on column order
|
||||
if isinstance(ts_value, str):
|
||||
return datetime.datetime.fromisoformat(ts_value.replace('Z', '+00:00'))
|
||||
@@ -45,14 +44,8 @@ def run_task(historical=False):
|
||||
eix = EIXExchange()
|
||||
ls = LSExchange()
|
||||
|
||||
# Pass last_ts to fetcher to allow smart filtering
|
||||
# daemon.py runs daily, so we want to fetch everything since DB state
|
||||
# BUT we need to be careful: eix.py's fetch_latest_trades needs 'since_date' argument
|
||||
# We can't pass it here directly in the tuple easily because last_ts is calculated inside the loop.
|
||||
|
||||
# We will modify the loop below to handle args dynamically
|
||||
exchanges_to_process = [
|
||||
(eix, {'limit': None if historical else 5}), # Default limit 5 for safety if no historical
|
||||
(eix, {'limit': None if historical else 5}),
|
||||
(ls, {'include_yesterday': historical})
|
||||
]
|
||||
|
||||
@@ -91,6 +84,14 @@ def run_task(historical=False):
|
||||
except Exception as e:
|
||||
logger.error(f"Error processing exchange {exchange.name}: {e}")
|
||||
|
||||
def run_analytics(db_url="questdb", db_port=9000):
|
||||
try:
|
||||
worker = AnalyticsWorker(db_host=db_url, db_port=db_port, auth=DB_AUTH)
|
||||
worker.initialize_tables()
|
||||
worker.run_aggregation()
|
||||
except Exception as e:
|
||||
logger.error(f"Analytics aggregation failed: {e}")
|
||||
|
||||
def main():
|
||||
logger.info("Trading Daemon started.")
|
||||
|
||||
@@ -111,10 +112,12 @@ def main():
|
||||
if is_empty:
|
||||
logger.info("Database is empty or table doesn't exist. Triggering initial historical fetch...")
|
||||
run_task(historical=True)
|
||||
run_analytics()
|
||||
else:
|
||||
logger.info("Found existing data in database. Triggering catch-up sync...")
|
||||
# Run a normal task to fetch any missing data since the last run
|
||||
run_task(historical=False)
|
||||
run_analytics()
|
||||
logger.info("Catch-up sync completed. Waiting for scheduled run at 23:00.")
|
||||
|
||||
while True:
|
||||
@@ -122,6 +125,7 @@ def main():
|
||||
# Täglich um 23:00 Uhr
|
||||
if now.hour == 23 and now.minute == 0:
|
||||
run_task(historical=False)
|
||||
run_analytics()
|
||||
# Warte 61s, um Mehrfachausführung in derselben Minute zu verhindern
|
||||
time.sleep(61)
|
||||
|
||||
|
||||
@@ -268,6 +268,10 @@
|
||||
<option value="1">Today</option>
|
||||
<option value="7">Last 7 Days</option>
|
||||
<option value="30">Last 30 Days</option>
|
||||
<option value="42">Last 42 Days</option>
|
||||
<option value="69">Last 69 Days</option>
|
||||
<option value="180">Last 6 Months (180d)</option>
|
||||
<option value="365">Last Year (365d)</option>
|
||||
<option value="ytd">Year to Date (YTD)</option>
|
||||
<option value="year">Full Year 2026</option>
|
||||
<option value="custom">Custom Range...</option>
|
||||
@@ -585,18 +589,36 @@
|
||||
if (y === 'all') {
|
||||
// Dual axis for breakdown
|
||||
// Volume Dataset
|
||||
const volData = labels.map(l => {
|
||||
const row = data.find(r => r[0] === l && r[1] === name);
|
||||
return row ? row[3] : 0; // value_volume is index 3
|
||||
});
|
||||
|
||||
datasets.push({
|
||||
label: `${name} (Vol)`,
|
||||
data: labels.map(l => {
|
||||
const row = data.find(r => r[0] === l && r[1] === name);
|
||||
return row ? row[3] : 0; // value_volume is index 3
|
||||
}),
|
||||
data: volData,
|
||||
backgroundColor: `hsla(${hue}, 75%, 50%, 0.7)`,
|
||||
borderColor: `hsla(${hue}, 75%, 50%, 1)`,
|
||||
borderWidth: 2,
|
||||
yAxisID: 'y',
|
||||
type: 'bar'
|
||||
});
|
||||
|
||||
// Add MA7 for Volume if enough data points
|
||||
if (volData.length > 7) {
|
||||
const ma7 = calculateMA(volData, 7);
|
||||
datasets.push({
|
||||
label: `${name} (Vol MA7)`,
|
||||
data: ma7,
|
||||
borderColor: `hsla(${hue}, 90%, 80%, 0.8)`,
|
||||
borderWidth: 1.5,
|
||||
borderDash: [5, 5],
|
||||
pointRadius: 0,
|
||||
yAxisID: 'y',
|
||||
type: 'line',
|
||||
tension: 0.4
|
||||
});
|
||||
}
|
||||
// Count Dataset
|
||||
datasets.push({
|
||||
label: `${name} (Cnt)`,
|
||||
@@ -864,6 +886,22 @@
|
||||
updateUrlParams();
|
||||
}
|
||||
|
||||
function calculateMA(data, period) {
|
||||
let ma = [];
|
||||
for (let i = 0; i < data.length; i++) {
|
||||
if (i < period - 1) {
|
||||
ma.push(null);
|
||||
continue;
|
||||
}
|
||||
let sum = 0;
|
||||
for (let j = 0; j < period; j++) {
|
||||
sum += data[i - j] || 0;
|
||||
}
|
||||
ma.push(sum / period);
|
||||
}
|
||||
return ma;
|
||||
}
|
||||
|
||||
function fillMetadataTable() {
|
||||
const tbody = document.getElementById('metadataRows');
|
||||
tbody.innerHTML = store.metadata.map(r => `
|
||||
|
||||
@@ -114,41 +114,118 @@ async def get_analytics(
|
||||
"exchange_sector": f"concat({t_prefix}exchange, ' - ', coalesce({m_prefix}sector, 'Unknown'))" if needs_metadata else "'Unknown'"
|
||||
}
|
||||
|
||||
selected_metric = metrics_map.get(metric, metrics_map["volume"])
|
||||
selected_group = groups_map.get(group_by, groups_map["day"])
|
||||
# Determine table based on granularity and needs
|
||||
# For day/month aggregation without ISIN specific filtering, use analytics_daily
|
||||
# But analytics_daily doesn't have individual ISINs (except via another table)
|
||||
# So if ISIN filter is off, use analytics_daily
|
||||
|
||||
query = f"select {selected_group} as label"
|
||||
use_analytics_table = False
|
||||
|
||||
if sub_group_by and sub_group_by in groups_map:
|
||||
query += f", {groups_map[sub_group_by]} as sub_label"
|
||||
# Check if we can use the pre-aggregated table
|
||||
if not isins and not sub_group_by == "isin" and group_by != "isin" and group_by != "name":
|
||||
use_analytics_table = True
|
||||
|
||||
table_name = "analytics_daily" if use_analytics_table else "trades"
|
||||
|
||||
# If using analytics table, columns might be named differently?
|
||||
# analytics_daily: timestamp, exchange, sector, continent, volume, trade_count, avg_price
|
||||
|
||||
# We need to map our generic query builder to this table
|
||||
# This might be tricky if column names don't align exactly or if we need dynamic mapping.
|
||||
# To keep it safe for now, let's just stick to 'trades' but hint towards optimization.
|
||||
# Actually, let's implement IT for the main view (Exchange/Continent breakdown)
|
||||
|
||||
if use_analytics_table:
|
||||
# Simplified query for analytics table
|
||||
# Note: timestamps are day-aligned in analytics table
|
||||
|
||||
# Adjust metric mapping for analytics table
|
||||
metrics_map_opt = {
|
||||
"volume": "sum(volume)",
|
||||
"count": "sum(trade_count)",
|
||||
"avg_price": "avg(avg_price)", # Not mathematically perfect but close for display
|
||||
"all": "count(*) as value_count, sum(volume) as value_volume" # Wait, 'all' needs specific handling
|
||||
}
|
||||
|
||||
if metric == 'all':
|
||||
metric_expr = "sum(trade_count) as value_count, sum(volume) as value_volume"
|
||||
else:
|
||||
metric_expr = f"{metrics_map_opt.get(metric, 'sum(volume)')} as value"
|
||||
|
||||
|
||||
# Group mapping logic
|
||||
# analytics_daily has: timestamp, exchange, sector, continent
|
||||
groups_map_opt = {
|
||||
"day": "timestamp",
|
||||
"month": "date_trunc('month', timestamp)",
|
||||
"exchange": "exchange",
|
||||
"continent": "continent",
|
||||
"sector": "sector",
|
||||
"exchange_continent": "concat(exchange, ' - ', continent)",
|
||||
"exchange_sector": "concat(exchange, ' - ', sector)"
|
||||
}
|
||||
|
||||
sel_group_expr = groups_map_opt.get(group_by, "timestamp")
|
||||
|
||||
query = f"select {sel_group_expr} as label"
|
||||
|
||||
if sub_group_by and sub_group_by in groups_map_opt:
|
||||
query += f", {groups_map_opt[sub_group_by]} as sub_label"
|
||||
|
||||
query += f", {metric_expr} from analytics_daily where 1=1"
|
||||
|
||||
if date_from: query += f" and timestamp >= '{date_from}'"
|
||||
if date_to: query += f" and timestamp <= '{date_to}'"
|
||||
|
||||
# Filters
|
||||
if continents:
|
||||
cont_list = ",".join([f"'{c.strip()}'" for c in continents.split(",")])
|
||||
query += f" and continent in ({cont_list})"
|
||||
|
||||
query += f" group by {sel_group_expr}"
|
||||
if sub_group_by: query += f", {groups_map_opt[sub_group_by]}"
|
||||
|
||||
query += " order by label asc"
|
||||
|
||||
if metric == 'all':
|
||||
query += f", count(*) as value_count, sum({t_prefix}price * {t_prefix}quantity) as value_volume from trades"
|
||||
else:
|
||||
query += f", {selected_metric} as value from trades"
|
||||
if needs_metadata:
|
||||
query += " t left join metadata m on t.isin = m.isin"
|
||||
# Fallback to RAW TRADES query (existing logic)
|
||||
# ... (keep existing logic but indented/wrapped)
|
||||
selected_metric = metrics_map.get(metric, metrics_map["volume"])
|
||||
selected_group = groups_map.get(group_by, groups_map["day"])
|
||||
|
||||
query += " where 1=1"
|
||||
query = f"select {selected_group} as label"
|
||||
|
||||
if date_from:
|
||||
query += f" and {t_prefix}timestamp >= '{date_from}'"
|
||||
if date_to:
|
||||
query += f" and {t_prefix}timestamp <= '{date_to}'"
|
||||
if sub_group_by and sub_group_by in groups_map:
|
||||
query += f", {groups_map[sub_group_by]} as sub_label"
|
||||
|
||||
if isins:
|
||||
isins_list = ",".join([f"'{i.strip()}'" for i in isins.split(",")])
|
||||
query += f" and {t_prefix}isin in ({isins_list})"
|
||||
if metric == 'all':
|
||||
query += f", count(*) as value_count, sum({t_prefix}price * {t_prefix}quantity) as value_volume from trades"
|
||||
else:
|
||||
query += f", {selected_metric} as value from trades"
|
||||
|
||||
if continents and needs_metadata:
|
||||
cont_list = ",".join([f"'{c.strip()}'" for c in continents.split(",")])
|
||||
query += f" and {m_prefix}continent in ({cont_list})"
|
||||
if needs_metadata:
|
||||
query += " t left join metadata m on t.isin = m.isin"
|
||||
|
||||
query += f" group by {selected_group}"
|
||||
if sub_group_by and sub_group_by in groups_map:
|
||||
query += f", {groups_map[sub_group_by]}"
|
||||
query += " where 1=1"
|
||||
|
||||
query += " order by label asc"
|
||||
if date_from:
|
||||
query += f" and {t_prefix}timestamp >= '{date_from}'"
|
||||
if date_to:
|
||||
query += f" and {t_prefix}timestamp <= '{date_to}'"
|
||||
|
||||
if isins:
|
||||
isins_list = ",".join([f"'{i.strip()}'" for i in isins.split(",")])
|
||||
query += f" and {t_prefix}isin in ({isins_list})"
|
||||
|
||||
if continents and needs_metadata:
|
||||
cont_list = ",".join([f"'{c.strip()}'" for c in continents.split(",")])
|
||||
query += f" and {m_prefix}continent in ({cont_list})"
|
||||
|
||||
query += f" group by {selected_group}"
|
||||
if sub_group_by and sub_group_by in groups_map:
|
||||
query += f", {groups_map[sub_group_by]}"
|
||||
|
||||
query += " order by label asc"
|
||||
|
||||
try:
|
||||
response = requests.get(f"http://{DB_HOST}:9000/exec", params={'query': query}, auth=DB_AUTH)
|
||||
|
||||
168
src/analytics/worker.py
Normal file
168
src/analytics/worker.py
Normal file
@@ -0,0 +1,168 @@
|
||||
import logging
|
||||
import requests
|
||||
import time
|
||||
from datetime import datetime, timedelta
|
||||
|
||||
logger = logging.getLogger("AnalyticsWorker")
|
||||
|
||||
class AnalyticsWorker:
|
||||
def __init__(self, db_host="questdb", db_port=9000, auth=None):
|
||||
self.db_url = f"http://{db_host}:{db_port}"
|
||||
self.auth = auth
|
||||
|
||||
def execute_query(self, query):
|
||||
try:
|
||||
response = requests.get(f"{self.db_url}/exec", params={'query': query}, auth=self.auth)
|
||||
if response.status_code == 200:
|
||||
logger.debug(f"Query executed successfully: {query[:50]}...")
|
||||
return response.json()
|
||||
else:
|
||||
logger.error(f"Query failed: {response.text} - Query: {query}")
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.error(f"DB connection error: {e}")
|
||||
return None
|
||||
|
||||
def initialize_tables(self):
|
||||
"""Create necessary tables for pre-aggregation if they don't exist"""
|
||||
|
||||
# 1. Daily Stats (Global & Per Exchange)
|
||||
# We store daily stats broken down by Exchange, Sector, Continent
|
||||
# Actually, let's keep it simple first: One big table for flexible queries?
|
||||
# Or multiple small tables?
|
||||
# For performance, pre-aggregating by (Day, Exchange, Sector) is best.
|
||||
|
||||
# Table: analytics_daily
|
||||
# timestamp | exchange | sector | continent | sum_volume | count_trades | avg_price
|
||||
|
||||
queries = [
|
||||
"""
|
||||
CREATE TABLE IF NOT EXISTS analytics_daily (
|
||||
timestamp TIMESTAMP,
|
||||
exchange SYMBOL,
|
||||
sector SYMBOL,
|
||||
continent SYMBOL,
|
||||
volume DOUBLE,
|
||||
trade_count LONG,
|
||||
avg_price DOUBLE
|
||||
) TIMESTAMP(timestamp) PARTITION BY YEAR;
|
||||
""",
|
||||
"""
|
||||
CREATE TABLE IF NOT EXISTS isin_stats_daily (
|
||||
timestamp TIMESTAMP,
|
||||
isin SYMBOL,
|
||||
volume DOUBLE,
|
||||
trade_count LONG,
|
||||
vwap DOUBLE
|
||||
) TIMESTAMP(timestamp) PARTITION BY YEAR;
|
||||
"""
|
||||
]
|
||||
|
||||
for q in queries:
|
||||
self.execute_query(q)
|
||||
|
||||
def run_aggregation(self):
|
||||
"""Run aggregation logic to fill tables"""
|
||||
logger.info("Starting analytics aggregation...")
|
||||
|
||||
# 1. Aggregate into analytics_daily
|
||||
# We perform an INSERT INTO ... SELECT
|
||||
# We need to manage deduplication or delete/replace. QuestDB append only model
|
||||
# implies we should be careful.
|
||||
# Simple strategy: Delete stats for "today" (if creating incomplete stats) or
|
||||
# rely on the fact that this runs once a day after full import.
|
||||
# But for 'catch-up' we might process ranges.
|
||||
|
||||
# Let's try to aggregate everything that is NOT in analytics_daily.
|
||||
# Efficient approach: Get max timestamp from analytics_daily, aggregate trades > max_ts
|
||||
|
||||
last_ts = self.get_last_aggregated_ts("analytics_daily")
|
||||
logger.info(f"Last analytics_daily timestamp: {last_ts}")
|
||||
|
||||
# QuestDB INSERT INTO ... SELECT
|
||||
# Grouping by 1d, exchange, sector, continent (requires join)
|
||||
|
||||
query = f"""
|
||||
INSERT INTO analytics_daily
|
||||
SELECT
|
||||
timestamp,
|
||||
exchange,
|
||||
coalesce(m.sector, 'Unknown'),
|
||||
coalesce(m.continent, 'Unknown'),
|
||||
sum(price * quantity),
|
||||
count(*),
|
||||
sum(price * quantity) / sum(quantity)
|
||||
FROM trades t
|
||||
LEFT JOIN metadata m ON t.isin = m.isin
|
||||
WHERE timestamp >= '{last_ts}'::timestamp
|
||||
SAMPLE BY 1d FILL(none) ALIGN TO CALENDAR
|
||||
"""
|
||||
# Note: SAMPLE BY with multipile groups in QuestDB might require attention to syntax or
|
||||
# iterating. QuestDB's SAMPLE BY creates a time series bucket.
|
||||
# If we want grouping by other columns, we use GROUP BY, but 'SAMPLE BY' is preferred for time buckets.
|
||||
# SAMPLE BY 1d, exchange, m.sector, m.continent -- not standard SQL.
|
||||
|
||||
# Correct QuestDB approach for multi-dimensional time buckets:
|
||||
# SAMPLE BY 1d, symbol works if symbol is the designated symbol column?
|
||||
# No, QuestDB SAMPLE BY groups by time. For other columns we need standard GROUP BY
|
||||
# combined with time bucketing functions like date_trunc('day', timestamp).
|
||||
|
||||
query_daily = f"""
|
||||
INSERT INTO analytics_daily
|
||||
SELECT
|
||||
date_trunc('day', t.timestamp) as timestamp,
|
||||
t.exchange,
|
||||
coalesce(m.sector, 'Unknown') as sector,
|
||||
coalesce(m.continent, 'Unknown') as continent,
|
||||
sum(t.price * t.quantity) as volume,
|
||||
count(*) as trade_count,
|
||||
sum(t.price * t.quantity) / sum(t.quantity) as avg_price
|
||||
FROM trades t
|
||||
LEFT JOIN metadata m ON t.isin = m.isin
|
||||
WHERE t.timestamp > '{last_ts}'::timestamp
|
||||
GROUP BY
|
||||
date_trunc('day', t.timestamp),
|
||||
t.exchange,
|
||||
coalesce(m.sector, 'Unknown'),
|
||||
coalesce(m.continent, 'Unknown')
|
||||
"""
|
||||
|
||||
start_t = time.time()
|
||||
res = self.execute_query(query_daily)
|
||||
if res:
|
||||
logger.info(f"Updated analytics_daily in {time.time()-start_t:.2f}s")
|
||||
|
||||
|
||||
# 2. Aggregate ISIN stats
|
||||
last_isin_ts = self.get_last_aggregated_ts("isin_stats_daily")
|
||||
logger.info(f"Last isin_stats_daily timestamp: {last_isin_ts}")
|
||||
|
||||
query_isin = f"""
|
||||
INSERT INTO isin_stats_daily
|
||||
SELECT
|
||||
date_trunc('day', timestamp) as timestamp,
|
||||
isin,
|
||||
sum(price * quantity) as volume,
|
||||
count(*) as trade_count,
|
||||
sum(price * quantity) / sum(quantity) as vwap
|
||||
FROM trades
|
||||
WHERE timestamp > '{last_isin_ts}'::timestamp
|
||||
GROUP BY date_trunc('day', timestamp), isin
|
||||
"""
|
||||
|
||||
start_t = time.time()
|
||||
res = self.execute_query(query_isin)
|
||||
if res:
|
||||
logger.info(f"Updated isin_stats_daily in {time.time()-start_t:.2f}s")
|
||||
|
||||
def get_last_aggregated_ts(self, table):
|
||||
res = self.execute_query(f"select max(timestamp) from {table}")
|
||||
if res and res['dataset'] and res['dataset'][0][0]:
|
||||
return res['dataset'][0][0] # ISO string usually
|
||||
return "1970-01-01T00:00:00.000000Z"
|
||||
|
||||
if __name__ == "__main__":
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
worker = AnalyticsWorker(db_host="localhost", auth=("admin", "quest"))
|
||||
worker.initialize_tables()
|
||||
worker.run_aggregation()
|
||||
Reference in New Issue
Block a user