performance improvements by pre-defining queries
All checks were successful
Deployment / deploy-docker (push) Successful in 17s

This commit is contained in:
Melchior Reimers
2026-01-25 17:11:05 +01:00
parent 9772d81f7d
commit 786fef2e71
4 changed files with 329 additions and 42 deletions

View File

@@ -6,6 +6,7 @@ import requests
from src.exchanges.eix import EIXExchange
from src.exchanges.ls import LSExchange
from src.database.questdb_client import DatabaseClient
from src.analytics.worker import AnalyticsWorker
logging.basicConfig(
level=logging.INFO,
@@ -27,8 +28,6 @@ def get_last_trade_timestamp(db_url, exchange_name):
data = response.json()
if data['dataset']:
# QuestDB returns timestamp in micros since epoch by default in some views, or ISO
# Let's assume the timestamp is in the dataset
# ILP timestamps are stored as designated timestamps.
ts_value = data['dataset'][0][0] # Adjust index based on column order
if isinstance(ts_value, str):
return datetime.datetime.fromisoformat(ts_value.replace('Z', '+00:00'))
@@ -45,14 +44,8 @@ def run_task(historical=False):
eix = EIXExchange()
ls = LSExchange()
# Pass last_ts to fetcher to allow smart filtering
# daemon.py runs daily, so we want to fetch everything since DB state
# BUT we need to be careful: eix.py's fetch_latest_trades needs 'since_date' argument
# We can't pass it here directly in the tuple easily because last_ts is calculated inside the loop.
# We will modify the loop below to handle args dynamically
exchanges_to_process = [
(eix, {'limit': None if historical else 5}), # Default limit 5 for safety if no historical
(eix, {'limit': None if historical else 5}),
(ls, {'include_yesterday': historical})
]
@@ -91,6 +84,14 @@ def run_task(historical=False):
except Exception as e:
logger.error(f"Error processing exchange {exchange.name}: {e}")
def run_analytics(db_url="questdb", db_port=9000):
try:
worker = AnalyticsWorker(db_host=db_url, db_port=db_port, auth=DB_AUTH)
worker.initialize_tables()
worker.run_aggregation()
except Exception as e:
logger.error(f"Analytics aggregation failed: {e}")
def main():
logger.info("Trading Daemon started.")
@@ -111,10 +112,12 @@ def main():
if is_empty:
logger.info("Database is empty or table doesn't exist. Triggering initial historical fetch...")
run_task(historical=True)
run_analytics()
else:
logger.info("Found existing data in database. Triggering catch-up sync...")
# Run a normal task to fetch any missing data since the last run
run_task(historical=False)
run_analytics()
logger.info("Catch-up sync completed. Waiting for scheduled run at 23:00.")
while True:
@@ -122,6 +125,7 @@ def main():
# Täglich um 23:00 Uhr
if now.hour == 23 and now.minute == 0:
run_task(historical=False)
run_analytics()
# Warte 61s, um Mehrfachausführung in derselben Minute zu verhindern
time.sleep(61)

View File

@@ -268,6 +268,10 @@
<option value="1">Today</option>
<option value="7">Last 7 Days</option>
<option value="30">Last 30 Days</option>
<option value="42">Last 42 Days</option>
<option value="69">Last 69 Days</option>
<option value="180">Last 6 Months (180d)</option>
<option value="365">Last Year (365d)</option>
<option value="ytd">Year to Date (YTD)</option>
<option value="year">Full Year 2026</option>
<option value="custom">Custom Range...</option>
@@ -585,18 +589,36 @@
if (y === 'all') {
// Dual axis for breakdown
// Volume Dataset
const volData = labels.map(l => {
const row = data.find(r => r[0] === l && r[1] === name);
return row ? row[3] : 0; // value_volume is index 3
});
datasets.push({
label: `${name} (Vol)`,
data: labels.map(l => {
const row = data.find(r => r[0] === l && r[1] === name);
return row ? row[3] : 0; // value_volume is index 3
}),
data: volData,
backgroundColor: `hsla(${hue}, 75%, 50%, 0.7)`,
borderColor: `hsla(${hue}, 75%, 50%, 1)`,
borderWidth: 2,
yAxisID: 'y',
type: 'bar'
});
// Add MA7 for Volume if enough data points
if (volData.length > 7) {
const ma7 = calculateMA(volData, 7);
datasets.push({
label: `${name} (Vol MA7)`,
data: ma7,
borderColor: `hsla(${hue}, 90%, 80%, 0.8)`,
borderWidth: 1.5,
borderDash: [5, 5],
pointRadius: 0,
yAxisID: 'y',
type: 'line',
tension: 0.4
});
}
// Count Dataset
datasets.push({
label: `${name} (Cnt)`,
@@ -864,6 +886,22 @@
updateUrlParams();
}
function calculateMA(data, period) {
let ma = [];
for (let i = 0; i < data.length; i++) {
if (i < period - 1) {
ma.push(null);
continue;
}
let sum = 0;
for (let j = 0; j < period; j++) {
sum += data[i - j] || 0;
}
ma.push(sum / period);
}
return ma;
}
function fillMetadataTable() {
const tbody = document.getElementById('metadataRows');
tbody.innerHTML = store.metadata.map(r => `

View File

@@ -114,41 +114,118 @@ async def get_analytics(
"exchange_sector": f"concat({t_prefix}exchange, ' - ', coalesce({m_prefix}sector, 'Unknown'))" if needs_metadata else "'Unknown'"
}
selected_metric = metrics_map.get(metric, metrics_map["volume"])
selected_group = groups_map.get(group_by, groups_map["day"])
# Determine table based on granularity and needs
# For day/month aggregation without ISIN specific filtering, use analytics_daily
# But analytics_daily doesn't have individual ISINs (except via another table)
# So if ISIN filter is off, use analytics_daily
query = f"select {selected_group} as label"
use_analytics_table = False
if sub_group_by and sub_group_by in groups_map:
query += f", {groups_map[sub_group_by]} as sub_label"
if metric == 'all':
query += f", count(*) as value_count, sum({t_prefix}price * {t_prefix}quantity) as value_volume from trades"
else:
query += f", {selected_metric} as value from trades"
if needs_metadata:
query += " t left join metadata m on t.isin = m.isin"
# Check if we can use the pre-aggregated table
if not isins and not sub_group_by == "isin" and group_by != "isin" and group_by != "name":
use_analytics_table = True
query += " where 1=1"
table_name = "analytics_daily" if use_analytics_table else "trades"
if date_from:
query += f" and {t_prefix}timestamp >= '{date_from}'"
if date_to:
query += f" and {t_prefix}timestamp <= '{date_to}'"
if isins:
isins_list = ",".join([f"'{i.strip()}'" for i in isins.split(",")])
query += f" and {t_prefix}isin in ({isins_list})"
# If using analytics table, columns might be named differently?
# analytics_daily: timestamp, exchange, sector, continent, volume, trade_count, avg_price
# We need to map our generic query builder to this table
# This might be tricky if column names don't align exactly or if we need dynamic mapping.
# To keep it safe for now, let's just stick to 'trades' but hint towards optimization.
# Actually, let's implement IT for the main view (Exchange/Continent breakdown)
if use_analytics_table:
# Simplified query for analytics table
# Note: timestamps are day-aligned in analytics table
# Adjust metric mapping for analytics table
metrics_map_opt = {
"volume": "sum(volume)",
"count": "sum(trade_count)",
"avg_price": "avg(avg_price)", # Not mathematically perfect but close for display
"all": "count(*) as value_count, sum(volume) as value_volume" # Wait, 'all' needs specific handling
}
if metric == 'all':
metric_expr = "sum(trade_count) as value_count, sum(volume) as value_volume"
else:
metric_expr = f"{metrics_map_opt.get(metric, 'sum(volume)')} as value"
if continents and needs_metadata:
cont_list = ",".join([f"'{c.strip()}'" for c in continents.split(",")])
query += f" and {m_prefix}continent in ({cont_list})"
# Group mapping logic
# analytics_daily has: timestamp, exchange, sector, continent
groups_map_opt = {
"day": "timestamp",
"month": "date_trunc('month', timestamp)",
"exchange": "exchange",
"continent": "continent",
"sector": "sector",
"exchange_continent": "concat(exchange, ' - ', continent)",
"exchange_sector": "concat(exchange, ' - ', sector)"
}
sel_group_expr = groups_map_opt.get(group_by, "timestamp")
query = f"select {sel_group_expr} as label"
if sub_group_by and sub_group_by in groups_map_opt:
query += f", {groups_map_opt[sub_group_by]} as sub_label"
query += f", {metric_expr} from analytics_daily where 1=1"
if date_from: query += f" and timestamp >= '{date_from}'"
if date_to: query += f" and timestamp <= '{date_to}'"
# Filters
if continents:
cont_list = ",".join([f"'{c.strip()}'" for c in continents.split(",")])
query += f" and continent in ({cont_list})"
query += f" group by {sel_group_expr}"
if sub_group_by: query += f", {groups_map_opt[sub_group_by]}"
query += " order by label asc"
else:
# Fallback to RAW TRADES query (existing logic)
# ... (keep existing logic but indented/wrapped)
selected_metric = metrics_map.get(metric, metrics_map["volume"])
selected_group = groups_map.get(group_by, groups_map["day"])
query += f" group by {selected_group}"
if sub_group_by and sub_group_by in groups_map:
query += f", {groups_map[sub_group_by]}"
query += " order by label asc"
query = f"select {selected_group} as label"
if sub_group_by and sub_group_by in groups_map:
query += f", {groups_map[sub_group_by]} as sub_label"
if metric == 'all':
query += f", count(*) as value_count, sum({t_prefix}price * {t_prefix}quantity) as value_volume from trades"
else:
query += f", {selected_metric} as value from trades"
if needs_metadata:
query += " t left join metadata m on t.isin = m.isin"
query += " where 1=1"
if date_from:
query += f" and {t_prefix}timestamp >= '{date_from}'"
if date_to:
query += f" and {t_prefix}timestamp <= '{date_to}'"
if isins:
isins_list = ",".join([f"'{i.strip()}'" for i in isins.split(",")])
query += f" and {t_prefix}isin in ({isins_list})"
if continents and needs_metadata:
cont_list = ",".join([f"'{c.strip()}'" for c in continents.split(",")])
query += f" and {m_prefix}continent in ({cont_list})"
query += f" group by {selected_group}"
if sub_group_by and sub_group_by in groups_map:
query += f", {groups_map[sub_group_by]}"
query += " order by label asc"
try:
response = requests.get(f"http://{DB_HOST}:9000/exec", params={'query': query}, auth=DB_AUTH)

168
src/analytics/worker.py Normal file
View File

@@ -0,0 +1,168 @@
import logging
import requests
import time
from datetime import datetime, timedelta
logger = logging.getLogger("AnalyticsWorker")
class AnalyticsWorker:
def __init__(self, db_host="questdb", db_port=9000, auth=None):
self.db_url = f"http://{db_host}:{db_port}"
self.auth = auth
def execute_query(self, query):
try:
response = requests.get(f"{self.db_url}/exec", params={'query': query}, auth=self.auth)
if response.status_code == 200:
logger.debug(f"Query executed successfully: {query[:50]}...")
return response.json()
else:
logger.error(f"Query failed: {response.text} - Query: {query}")
return None
except Exception as e:
logger.error(f"DB connection error: {e}")
return None
def initialize_tables(self):
"""Create necessary tables for pre-aggregation if they don't exist"""
# 1. Daily Stats (Global & Per Exchange)
# We store daily stats broken down by Exchange, Sector, Continent
# Actually, let's keep it simple first: One big table for flexible queries?
# Or multiple small tables?
# For performance, pre-aggregating by (Day, Exchange, Sector) is best.
# Table: analytics_daily
# timestamp | exchange | sector | continent | sum_volume | count_trades | avg_price
queries = [
"""
CREATE TABLE IF NOT EXISTS analytics_daily (
timestamp TIMESTAMP,
exchange SYMBOL,
sector SYMBOL,
continent SYMBOL,
volume DOUBLE,
trade_count LONG,
avg_price DOUBLE
) TIMESTAMP(timestamp) PARTITION BY YEAR;
""",
"""
CREATE TABLE IF NOT EXISTS isin_stats_daily (
timestamp TIMESTAMP,
isin SYMBOL,
volume DOUBLE,
trade_count LONG,
vwap DOUBLE
) TIMESTAMP(timestamp) PARTITION BY YEAR;
"""
]
for q in queries:
self.execute_query(q)
def run_aggregation(self):
"""Run aggregation logic to fill tables"""
logger.info("Starting analytics aggregation...")
# 1. Aggregate into analytics_daily
# We perform an INSERT INTO ... SELECT
# We need to manage deduplication or delete/replace. QuestDB append only model
# implies we should be careful.
# Simple strategy: Delete stats for "today" (if creating incomplete stats) or
# rely on the fact that this runs once a day after full import.
# But for 'catch-up' we might process ranges.
# Let's try to aggregate everything that is NOT in analytics_daily.
# Efficient approach: Get max timestamp from analytics_daily, aggregate trades > max_ts
last_ts = self.get_last_aggregated_ts("analytics_daily")
logger.info(f"Last analytics_daily timestamp: {last_ts}")
# QuestDB INSERT INTO ... SELECT
# Grouping by 1d, exchange, sector, continent (requires join)
query = f"""
INSERT INTO analytics_daily
SELECT
timestamp,
exchange,
coalesce(m.sector, 'Unknown'),
coalesce(m.continent, 'Unknown'),
sum(price * quantity),
count(*),
sum(price * quantity) / sum(quantity)
FROM trades t
LEFT JOIN metadata m ON t.isin = m.isin
WHERE timestamp >= '{last_ts}'::timestamp
SAMPLE BY 1d FILL(none) ALIGN TO CALENDAR
"""
# Note: SAMPLE BY with multipile groups in QuestDB might require attention to syntax or
# iterating. QuestDB's SAMPLE BY creates a time series bucket.
# If we want grouping by other columns, we use GROUP BY, but 'SAMPLE BY' is preferred for time buckets.
# SAMPLE BY 1d, exchange, m.sector, m.continent -- not standard SQL.
# Correct QuestDB approach for multi-dimensional time buckets:
# SAMPLE BY 1d, symbol works if symbol is the designated symbol column?
# No, QuestDB SAMPLE BY groups by time. For other columns we need standard GROUP BY
# combined with time bucketing functions like date_trunc('day', timestamp).
query_daily = f"""
INSERT INTO analytics_daily
SELECT
date_trunc('day', t.timestamp) as timestamp,
t.exchange,
coalesce(m.sector, 'Unknown') as sector,
coalesce(m.continent, 'Unknown') as continent,
sum(t.price * t.quantity) as volume,
count(*) as trade_count,
sum(t.price * t.quantity) / sum(t.quantity) as avg_price
FROM trades t
LEFT JOIN metadata m ON t.isin = m.isin
WHERE t.timestamp > '{last_ts}'::timestamp
GROUP BY
date_trunc('day', t.timestamp),
t.exchange,
coalesce(m.sector, 'Unknown'),
coalesce(m.continent, 'Unknown')
"""
start_t = time.time()
res = self.execute_query(query_daily)
if res:
logger.info(f"Updated analytics_daily in {time.time()-start_t:.2f}s")
# 2. Aggregate ISIN stats
last_isin_ts = self.get_last_aggregated_ts("isin_stats_daily")
logger.info(f"Last isin_stats_daily timestamp: {last_isin_ts}")
query_isin = f"""
INSERT INTO isin_stats_daily
SELECT
date_trunc('day', timestamp) as timestamp,
isin,
sum(price * quantity) as volume,
count(*) as trade_count,
sum(price * quantity) / sum(quantity) as vwap
FROM trades
WHERE timestamp > '{last_isin_ts}'::timestamp
GROUP BY date_trunc('day', timestamp), isin
"""
start_t = time.time()
res = self.execute_query(query_isin)
if res:
logger.info(f"Updated isin_stats_daily in {time.time()-start_t:.2f}s")
def get_last_aggregated_ts(self, table):
res = self.execute_query(f"select max(timestamp) from {table}")
if res and res['dataset'] and res['dataset'][0][0]:
return res['dataset'][0][0] # ISO string usually
return "1970-01-01T00:00:00.000000Z"
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
worker = AnalyticsWorker(db_host="localhost", auth=("admin", "quest"))
worker.initialize_tables()
worker.run_aggregation()