Fix: Analytics Worker berechnet jetzt alle Tabellen pro Tag
All checks were successful
Deployment / deploy-docker (push) Successful in 17s

This commit is contained in:
Melchior Reimers
2026-01-27 14:12:26 +01:00
parent 4fd93541a2
commit 459c24fcd3
3 changed files with 74 additions and 170 deletions

View File

@@ -4,8 +4,11 @@ from fastapi.staticfiles import StaticFiles
from fastapi.responses import FileResponse
import requests
import os
import logging
from typing import Optional, Dict, Any
logger = logging.getLogger(__name__)
app = FastAPI(title="Trading Dashboard API")
app.add_middleware(
@@ -85,21 +88,11 @@ async def get_trades(isin: str = None, days: int = 7):
data = query_questdb(query)
# Fallback: Wenn analytics_exchange_daily leer ist, berechne direkt aus trades
# Wenn analytics_exchange_daily leer ist, gib leere Daten zurück
# Der Analytics Worker sollte die Daten berechnen
if not data or not data.get('dataset') or len(data.get('dataset', [])) == 0:
logger.info(f"analytics_exchange_daily is empty, calculating from trades table")
query = f"""
select
date_trunc('day', timestamp) as date,
exchange,
count(*) as trade_count,
sum(price * quantity) as volume
from trades
where timestamp >= dateadd('d', -{days}, now())
group by date, exchange
order by date desc, exchange asc
"""
data = query_questdb(query)
logger.warning(f"analytics_exchange_daily is empty. Analytics worker should calculate this data.")
return {'columns': [{'name': 'date'}, {'name': 'exchange'}, {'name': 'trade_count'}, {'name': 'volume'}], 'dataset': []}
return format_questdb_response(data)
@@ -136,25 +129,18 @@ async def get_summary(days: int = None):
data = query_questdb(query)
# Fallback: Wenn analytics_daily_summary leer ist, berechne direkt aus trades
# Wenn analytics_daily_summary leer ist, gib leere Daten zurück
# Der Analytics Worker sollte die Daten berechnen
if not data or not data.get('dataset') or not data['dataset']:
logger.info(f"analytics_daily_summary is empty, calculating from trades table")
if days:
query = f"""
select
count(*) as total_trades,
sum(price * quantity) as total_volume
from trades
where timestamp >= dateadd('d', -{days}, now())
"""
else:
query = """
select
count(*) as total_trades,
sum(price * quantity) as total_volume
from trades
"""
data = query_questdb(query)
logger.warning(f"analytics_daily_summary is empty. Analytics worker should calculate this data.")
return {
'columns': [
{'name': 'continent'},
{'name': 'trade_count'},
{'name': 'total_volume'}
],
'dataset': [['All', 0, 0.0]]
}
if data and data.get('dataset') and data['dataset']:
total_trades = data['dataset'][0][0] if data['dataset'][0][0] else 0
@@ -170,18 +156,15 @@ async def get_summary(days: int = None):
'dataset': [['All', total_trades, total_volume]]
}
# Fallback: Original Query
query = """
select
coalesce(m.continent, 'Unknown') as continent,
count(*) as trade_count,
sum(t.price * t.quantity) as total_volume
from trades t
left join metadata m on t.isin = m.isin
group by continent
"""
data = query_questdb(query)
return format_questdb_response(data)
# Wenn keine Daten vorhanden, gib leere Daten zurück
return {
'columns': [
{'name': 'continent'},
{'name': 'trade_count'},
{'name': 'total_volume'}
],
'dataset': [['All', 0, 0.0]]
}
@app.get("/api/statistics/total-trades")
async def get_total_trades(days: int = None):
@@ -231,7 +214,11 @@ async def get_custom_analytics(
# Für Custom Analytics: x_axis muss "date" sein (wird täglich vorberechnet)
if x_axis != "date":
# Fallback auf direkte Query für nicht-date x_axis
# Für nicht-date x_axis: gib Fehler zurück, da dies nicht vorberechnet wird
raise HTTPException(
status_code=400,
detail="x_axis must be 'date' for pre-calculated analytics. Other x_axis values are not supported for performance reasons."
)
y_axis_map = {
"volume": "sum(price * quantity)",
"trade_count": "count(*)",
@@ -278,22 +265,12 @@ async def get_custom_analytics(
exchange_list = [e.strip() for e in exchanges.split(",")]
if len(exchange_list) == 1:
exchange_filter = exchange_list[0]
# Bei mehreren Exchanges: Fallback auf direkte Query
else:
query = f"""
select
timestamp as x_value,
{group_by} as group_value,
{'sum(price * quantity)' if y_axis == 'volume' else 'count(*)' if y_axis == 'trade_count' else 'avg(price)'} as y_value
from trades
where timestamp >= '{date_from}'
and timestamp <= '{date_to}'
and exchange in ({','.join([f"'{e}'" for e in exchange_list])})
group by timestamp, {group_by}
order by timestamp asc, {group_by} asc
"""
data = query_questdb(query, timeout=15)
return format_questdb_response(data)
# Bei mehreren Exchanges: gib Fehler zurück, da dies nicht vorberechnet wird
raise HTTPException(
status_code=400,
detail="Multiple exchanges are not supported for pre-calculated analytics. Please specify a single exchange or leave empty for all exchanges."
)
# Query für vorberechnete Daten
query = f"""
@@ -312,39 +289,16 @@ async def get_custom_analytics(
data = query_questdb(query, timeout=5)
if not data or not data.get('dataset'):
# Fallback: direkte Query wenn keine vorberechneten Daten vorhanden
logger.warning(f"No pre-calculated data found, falling back to direct query")
y_axis_map = {
"volume": "sum(price * quantity)",
"trade_count": "count(*)",
"avg_price": "avg(price)"
# Wenn keine vorberechneten Daten vorhanden, gib leere Daten zurück
logger.warning(f"No pre-calculated data found in analytics_custom. Analytics worker should calculate this data.")
return {
'columns': [
{'name': 'x_value'},
{'name': 'group_value'},
{'name': 'y_value'}
],
'dataset': []
}
group_by_map = {
"exchange": "exchange",
"isin": "isin",
"date": "date_trunc('day', timestamp)"
}
y_metric = y_axis_map[y_axis]
group_by_field = group_by_map[group_by]
query = f"""
select
date_trunc('day', timestamp) as x_value,
{group_by_field} as group_value,
{y_metric} as y_value
from trades
where timestamp >= '{date_from}'
and timestamp <= '{date_to}'
"""
if exchanges:
exchange_list = ",".join([f"'{e.strip()}'" for e in exchanges.split(",")])
query += f" and exchange in ({exchange_list})"
query += f" group by date_trunc('day', timestamp), {group_by_field} order by x_value asc, group_value asc"
data = query_questdb(query, timeout=15)
return format_questdb_response(data)
@@ -376,25 +330,21 @@ async def get_moving_average(days: int = 7, exchange: str = None):
data = query_questdb(query, timeout=5)
# Fallback: Wenn analytics_exchange_daily leer ist, berechne direkt aus trades
# Wenn analytics_exchange_daily leer ist, gib leere Daten zurück
# Der Analytics Worker sollte die Daten berechnen
if not data or not data.get('dataset') or len(data.get('dataset', [])) == 0:
logger.info(f"analytics_exchange_daily is empty, calculating moving average from trades table")
# Berechne Moving Average direkt aus trades (vereinfacht, ohne echte MA-Berechnung)
query = f"""
select
date_trunc('day', timestamp) as date,
exchange,
count(*) as trade_count,
sum(price * quantity) as volume,
count(*) as ma_count,
sum(price * quantity) as ma_volume
from trades
where timestamp >= dateadd('d', -{days}, now())
"""
if exchange:
query += f" and exchange = '{exchange}'"
query += " group by date, exchange order by date asc, exchange asc"
data = query_questdb(query, timeout=10)
logger.warning(f"analytics_exchange_daily is empty. Analytics worker should calculate this data.")
return {
'columns': [
{'name': 'date'},
{'name': 'exchange'},
{'name': 'trade_count'},
{'name': 'volume'},
{'name': 'ma_count'},
{'name': 'ma_volume'}
],
'dataset': []
}
return format_questdb_response(data)
@@ -424,67 +374,21 @@ async def get_volume_changes(days: int = 7):
data = query_questdb(query, timeout=5)
# Falls keine vorberechneten Daten vorhanden, berechne on-the-fly
# Wenn keine vorberechneten Daten vorhanden, gib leere Daten zurück
# Der Analytics Worker sollte die Daten berechnen
if not data or not data.get('dataset'):
logger.info(f"No pre-calculated volume changes found for {days} days, calculating on-the-fly")
# Berechne Volumen-Änderungen direkt aus trades
query = f"""
with
first_half as (
select
exchange,
count(*) as trade_count,
sum(price * quantity) as volume
from trades
where timestamp >= dateadd('d', -{days}, now())
and timestamp < dateadd('d', -{days/2}, now())
group by exchange
),
second_half as (
select
exchange,
count(*) as trade_count,
sum(price * quantity) as volume
from trades
where timestamp >= dateadd('d', -{days/2}, now())
group by exchange
)
select
coalesce(f.exchange, s.exchange) as exchange,
coalesce(s.trade_count, 0) as trade_count,
coalesce(s.volume, 0) as volume,
case when f.trade_count > 0 then
((coalesce(s.trade_count, 0) - f.trade_count) * 100.0 / f.trade_count)
else 0 end as count_change_pct,
case when f.volume > 0 then
((coalesce(s.volume, 0) - f.volume) * 100.0 / f.volume)
else 0 end as volume_change_pct,
case
when f.trade_count > 0 and f.volume > 0 then
case
when ((coalesce(s.trade_count, 0) - f.trade_count) * 100.0 / f.trade_count) > 5
and ((coalesce(s.volume, 0) - f.volume) * 100.0 / f.volume) > 5
then 'mehr_trades_mehr_volumen'
when ((coalesce(s.trade_count, 0) - f.trade_count) * 100.0 / f.trade_count) > 5
and ((coalesce(s.volume, 0) - f.volume) * 100.0 / f.volume) < -5
then 'mehr_trades_weniger_volumen'
when ((coalesce(s.trade_count, 0) - f.trade_count) * 100.0 / f.trade_count) < -5
and ((coalesce(s.volume, 0) - f.volume) * 100.0 / f.volume) > 5
then 'weniger_trades_mehr_volumen'
when ((coalesce(s.trade_count, 0) - f.trade_count) * 100.0 / f.trade_count) < -5
and ((coalesce(s.volume, 0) - f.volume) * 100.0 / f.volume) < -5
then 'weniger_trades_weniger_volumen'
else 'stabil'
end
else 'neu'
end as trend
from first_half f
full outer join second_half s on f.exchange = s.exchange
order by s.volume desc
"""
data = query_questdb(query, timeout=15)
logger.warning(f"No pre-calculated volume changes found for {days} days. Analytics worker should calculate this data.")
return {
'columns': [
{'name': 'exchange'},
{'name': 'trade_count'},
{'name': 'volume'},
{'name': 'count_change_pct'},
{'name': 'volume_change_pct'},
{'name': 'trend'}
],
'dataset': []
}
return format_questdb_response(data)